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ABSTRACT  
Direction finding has roots dating back to the introduction of the wireless communication technology, with 
first algorithms appearing in the literature early in the twentieth century. Motivated by the widespread 
adoption of Multi-Input Multi-output (MIMO) architectures in wireless communication systems, radar 
systems which can transmit independent waveforms on multiple antennas coupled with independently 
sampled receive arrays have been suggested for improving detection, parameter estimation and clutter 
suppression capabilities. In this paper we present a compressive radar architecture that combines multitone 
linear frequency modulated (LFM) waveforms on transmit with classical stretch processor and sub-Nyquist 
sampling on receive. The proposed compressive illumination scheme has fewer random elements than 
previously proposed compressive radar designs based on stochastic waveforms, resulting in reduced storage 
and complexity for implementation. Recovery guarantees for the proposed compressive illumination scheme 
is presented for the joint estimation of range and DOA. Finally, simulation results are presented to study 
recovery performance as a function of system parameters for targets both on and off the grid. 

1.0 INTRODUCTION 

Direction finding has roots dating back to the introduction of the wireless communication technology, with 
first algorithms appearing in the literature early in the twentieth century. As the radio frequency technology 
shifted from analog to digital, detection and tracking a large number of emitters become a possibility using 
an array of antennas sampled and processed in digital domain. Motivated by the widespread adoption of 
Multi-Input Multi-output (MIMO) architectures in wireless communication systems, radar systems which 
can transmit independent waveforms on multiple antennas coupled with independently sampled receive 
arrays have been suggested for improving detection, parameter estimation and clutter suppression 
capabilities. energy from multiple pulses and multiple antenna elements can be processed jointly to solve a 
multitude of inference tasks including detection, tracking and classification [1]. In the following we focus 
primarily on the problem of estimation of Direction of arrival (DOA), however we note that in radar systems 
the DOA problem is often coupled with range and Doppler frequency estimation and detection. 

In this  paper, we focus on coherent MIMO radar systems with closely separated antennas, such that the 
angle of arrival of each scatterer in the illuminated scene is approximately the same for all phase centers. The 
distinct advantage of a multi-antenna radar system with independent transmit waveforms is the increased 
number of degrees of freedom leading to improved resolution~ detection~, and parameter estimation 
performance. Additionally, MIMO radar systems with multiple transmit and receive elements employing 
independent waveforms on transmit can provide spatial processing gains by exploiting the diversity of 
channels between targets and radar [2, 3]. In the following, we formulate the direction of arrival estimation 
problem in the context of MIMO radar, describe traditional DOA estimation methods and briefly review 
known results on performance limits. In Section 2, we present a compressive radar architecture that 
combines multitone linear frequency modulated (LFM) waveforms on transmit with classical stretch 
processor [5] and sub-Nyquist sampling on receive. The proposed compressive illumination scheme has 
fewer random elements than previously proposed compressive radar designs based on stochastic waveforms, 
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resulting in reduced storage and complexity for implementation. Recovery guarantees for the proposed 
compressive illumination scheme is presented for the joint estimation of range and DOA. We present bounds 
on the operator norm and mutual coherence of the structured sensing matrix representing the proposed 
scheme and show that for sufficiently large number of modulating tones, high resolution recovery is 
guaranteed for a sparse scene using sampling rates that scale linearly with the scene sparsity. Finally, 
simulation results are presented to study recovery performance as a function of system parameters for targets 
both on and off the grid. 

2.0 CS MODELS AND SPARSE SIGNAL METHODS FOR DOA 

2.1 Overview 
Compressive MIMO radar architectures purposefully subsample the signal in time and spatial domain to 
reduce the load on the signal acquisition system and operate at sampling speeds not available currently [4].  
As a result, straightforward match filtering results in strong range/angle sidelobes, rendering traditional 
beamformer methods suboptimal. In contrast, sparse reconstruction algorithms can successfully detect and 
localize targets by imposing sparse priors on the number of targets in the scene. 

In the following we will study in detail the estimation problem of range and angle of arrival of targets using a 
specific MIMO radar architecture employing compressive illumination  transmit waveforms [33, 34] and 
review theoretical results reported in [39, 40, 37]. Many MIMO DOA processing chains use a sequential 
strategy where detection in range is followed by detection in angle of arrival. This strategy is optimal only if 
there is perfect orthogonality between the transmit signals, as in the case of time division multiple access 
(TDMA) where only one transmitter is active at any time. For simultaneous transmit architectures, perfect 
orthogonality is unachievable between target returns for all delays and angles.  Therefore, in the following 
we will pursue a joint estimation strategy for target range and DOA and characterize its performance using 
empirical and theoretical analysis. We will assume that the scene is comprised of a sparse set of dominant 
scattering centers. This assumption enables us to reduce the sampling rate at the receiver, thereby reducing 
the burden on acquisition systems. We present the uniform and non-uniform recovery guarantees for the 
proposed illumination framework and also conduct numerical simulations to illustrate the performance as a 
function of the system parameters. 

2.2 Analytical Model for Compressive MIMO Sensor 
We consider  transmitters and  collocated receivers that function as a MIMO radar system. This system 
employs the compressive illumination framework first proposed in [33]  which is extended to the case of 
multiple transmitters and receivers for estimating the target range and angle of arrival in [39, 40].  The 
transmitter antenna elements are placed with a spacing of  and the receiver antenna elements are 
placed with a spacing of  relative to the wavelength  of the carrier to obtain the virtual 
array with aperture length  m, where  is the velocity of light in vacuum, and  is the carrier 
frequency. The process used to generate the transmitted signal is shown in Figure 1. 

 
Figure 1: Block Diagram of the compressive transceiver 
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Figure 2: The time-frequency representations of the waveform employed by two transmitters 
 and received signal at one of the collocated receiver  are shown. The transmitted 

waveforms are obtained as a result of modulation of the linear frequency modulated waveform 
by a set of sinusoids with randomly chosen frequencies. The received signal is a weighted linear 

combination of the transmitted signals. 

We discretize the frequency range  into N frequencies , where ,  is the 
unambiguous time interval, and  is the system bandwidth. A subset of  tones are chosen at random 
from these  possible frequencies, where  is the number of modulating tones used in each transmitter. 
These chosen tones are used for modulating the LFM waveform with bandwidth , using the Single 
Side-Band (SSB) modulation technique. We simplify this selection model for analysis by considering  
independent indicator random variables  following a Bernoulli distribution with 

, and  to select the tones that modulate the LFM waveform 
such that  waveforms are selected on an average. The chosen LFM waveforms are scaled by a 
sequence of independent and identical complex exponentials with uniformly distributed phases with the 
probability density function . We define the sequence of random variables  
that model this selection process as    

Each selected waveform is assigned to one of the  transmitters at random with uniform probability. Let 

 be the discrete random variable that indicates the assignment of waveform  to transmitter  given by 

the uniform probability mass function , , . The 

transmitted signal from all the  transmitters can be written as 

where  if  and  0 otherwise, and 

, for . The instantaneous frequency of the transmitted and received modulated LFM 

signal as a function of time is illustrated in Figure 2. for the case of . 
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Figure 3: The figure illustrates the structure of the received signal due to a single scattering 
center located with range  and angle . The stretch processing at the receiver utilizes the 

transmitted LFM waveform before the modulation step. The effect of this operation recovers the 
modulating tones, shown in solid lines in the frequency domain, which are further modulated by 
a complex exponential with a frequency that depends on the range of the scattering center. The 
sampling rate is set as , which leads to an aliased spectrum shown in dashed lines. 

Figure 3 shows the stretch processing operation implemented at a particular receiver. The sampling rate at 
the receiver after stretch processing is , which leads to  samples at stretch processor 
output at each receiver. Since the sampling rate is much lower than the Nyquist rate required for the 
modulating tones, the multi-tone spectrum corresponding to a target with a delay of  aliases to the range 

. Unlike the problem of determining spectral content from uniform time samples [31,32], it is 
established that we can uniquely recover the delay and angle of arrival of a sparse set of targets given a 
sufficient number of modulating tones are used in the illumination scheme. The  sample  at the 
stretch processor at receiver  due to a target located at a delay  and an angle of arrival  
with amplitude  is given by 

 

 is the  noise sample at receiver ,  is the array steering parameter 

corresponding to receiver ,  is the steering parameter corresponding to the 

chosen transmitter specified by the random variable  for the  waveform,  and 

represents the signal component due to a target located at range  and angle of arrival  referred to as an 

atom. We further discretize the range and angle of arrival space. The unambiguous interval from  is 

discretized at a resolution of  corresponding to the resolution achieved by a system employing a signal 

of bandwidth  resulting in  bins. Each delay bin is denoted as , . 
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The angle of arrival characterized by  is partitioned into  grids. Each angle bin is 

denoted as . The receiver and transmitter steering 

vectors as function of the angle of arrival  are defined as 

 

respectively, where , and . The normalized samples at the stretch processor output 

 at receiver  due to the targets in the region of interest is given by 

where , , and  is the 

scattering coefficient at range bin  and angle of arrival bin . The concatenated output from all the  
receivers can be compactly written as       

where the signal is given by    

is the zero mean additive noise following a Complex Gaussian distribution with variance , and  
contains the complex scattering amplitudes associated with targets at all possible grid locations in the range-
angle domain. The sensing matrix  can be expressed as a series of deterministic matrices with 
random coefficients as follows 

        

where  and .  is the matrix consisting of receiver steering 

vectors for all the bins of angle of arrival,  represents the 

Kronecker product and  is the random 
diagonal matrix with diagonal elements as the randomly chosen 
transmitter’s component of the steering vector for all the angle 
bins. The individual components are as follows 

where  and ,  are the samples from tones that correspond to each delay bin 
generated as a result of the de-chirping process in case of a single chirp system,  is the shift in 
frequency due to the  modulating tone, and  is the phase term associated with different delay bins 
due to the  modulating tone. 
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Each column of the sensing matrix  can be written as  

where , .  is the random vector with independent 
components expressed as a product of 2 random variables: a variable that selects the chirp waveform, and an 
independent variable that allocates the waveform to a particular transmitter. 

2.3 Theoretical Recovery Guarantees for Targets on grid 
We consider a statistical model studied in [19] for the sparse range profile of targets. We assume that the 
targets are located at the  discrete locations corresponding to different delay bins and angle bins. 
For the case of single transmitter and receiver case, this reduces to  delay bins. The support of the K-sparse 
range profile is chosen uniformly from all possible subsets of size . The complex amplitude of non-zero 
components is assumed to have an arbitrary magnitude and uniformly distributed phase in . We show 
that the measurement model presented in the previous section satisfies the conditions on mutual coherence 
given in [36] and also provide a bound on the sparsity level of range profile, which guarantees successful 
support recovery of almost all sparse signals using LASSO with high probability from noisy measurements.  
The following theorems (for proofs please see reference [39,37]) provide the recovery guarantee for a 
compressive MIMO radar system. 

Non-uniform Recovery Guarantee for Random Support Sets:  Consider a compressive MIMO radar 
system with the measurement model , where  is defined in Section 1.5.2 
such that the target scene  is drawn from a K-sparse model with complex unknown amplitudes and 
observed in i.i.d. noise process . The support of the targets in the scene can be recovered 
using a LASSO estimator with high probability for a system using  samples at each receiver,  tones at 
each transmitter with  and , if the target scene consists of  targets 
with  

    of minimum amplitude  
We note that the number of measurements ) depends linearly on the number of targets ( ) but only 
logarithmically on the size of the search space of ( angle-range bins. 

2.4 Simulation Study of Off-grid Recovery 

We consider the MIMO system with  transmitters and  receivers with  measurements per receiver. 

The samples at the stretch processor’s output at receiver  due to a target with a time of arrival given by  

and angle of arrival  as given before.  For a scene containing  scattering centers, the measurements are 
given by 

where  is the receiver noise following 
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a zero-mean complex Gaussian distribution with variance ,  are the complex scattering coefficients, 

 are the delay and angle of arrival for each scattering center,  is the Dirac delta generalized 

function, and  is the discrete measure with complex coefficients.  is the 
known structured response parametrized by the time and angle of arrival of the scattering center due to the 
proposed illumination scheme. The space of unknown parameters is usually discretized, and the non-linear 
estimation problem is converted to a linear inverse problem. In the previous chapter, we established that 
the operator representing our system is well-conditioned for a sparse scene provided we have sufficient 
samples and modulating tones. In this sequel, we solve the following problem in the continuum 

    where  are the noisy measurements,  is the discrete measure over 
the space of delay and angle of arrival, and  is the total-variation norm on the space of discrete 
measures with complex coefficients bounded by the problem specific parameter . The next section 
presents the details of the algorithm, which was proposed in [49] for solving the sparse linear inverse 
problem above. 

2.5 Off-grid Recovery algorithm 
Recently, multiple approaches have been suggested solving the off-grid target detection algorithms.  
Atomic norm formulation [53] of the problem leads to a closed form solution for frequency estimation 
problems [11]. Alternatively, one can obtain the solution by over-discretizing the search space into finer 
grids. It has been shown [50] that the  norm minimization in the over-discretized space converges to the 
atomic norm minimization in the continuum. The problem with this approach is that the computational 
complexity increases with the dimensionality of the parameter space. Instead of discretization, we apply 
the approach of [49] to exploit the fact that the measurement model is differentiable in the unknown 
parameters such as delay and angle of arrival of scattering centers to solve this off-grid problem. 
Algorithm 1: Alternating descent conditional gradient method [49]. 
 
Data: Given , , , , , and . 
Result: Estimate complex weights , delay,angle of arrival of scattering centers . 
Initialize k=1, support set  
While Convergence condition is not satisfied or  

 
While 

 

 
end 

; 
end 
Algorithm 1 provides the details of the alternating descent conditional gradient method used to solve the 
range, angle estimation problem with sparsity constraints. The method first selects the set of parameters in 
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the parameter space to fit the residual by the model at the current iterate, followed with a gradient update step 
where the weights and the support are refined. This non-convex problem of jointly estimating the weights 
and the parameters is solved by an alternating minimization approach. The weights are estimated by solving 
the finite dimensional problem on the detected support set by enforcing the  constraint on the weights. The 
support set is pruned such that only non-zero points in the support set are retained. Next, the support set is 
refined using the gradient information with the steepest descent method with line search.  

2.6 Simulation Results 
System parameters used in the numerical simulation is given in the table below. Signal to Noise ratio (SNR) 
of  and under-sampling ratio of  is used in the simulations. We consider the number of 
transmitters , and the number of receivers  in our simulation. Each transmitter uses an LFM 
waveform modulated by   tones with a randomly chosen frequency shifts. We set the number of targets 
in the scene as  using the random support over the range-angle space.  We compare the 
performance of the system as the number of modulating tones is varied using the metrics defined below. We 
define the set consisting of the true range of the scattering centers as  with complex 
scattering coefficients  for , where  is the number of targets in the scene. We define  as 
the neighborhood of the true range  and angle of arrival , such that  

  
The region of false detections is defined as   
We consider the following performance measures to compare the systems employing different sets of 
modulating tones 

• Total amplitude of false alarms:   

  
• weighted direction of arrival localization error 

 
• weighted range localization error    

   
• approximation error in the detected scattering coefficients   

  
 

We evaluate the performance profile of the two algorithms traditional beamforming and off-grid CS based 
sparse recovery. The performance profile tabulates fraction of the Monte Carlo simulations where one 

algorithm error was within  factor of the minimum error for that run. The performance profile is evaluated 

by repeating the experiment for different realizations of target denoted by the set . Analytically, the 

performance profile for the system parameter , error metric , and factor , which specifies the ratio 
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 is computed as follows     

To choose threshold for the traditional beamforming algorithm we computed the receiver operation curve for 
the two algorithms as given in Figure 4.  For the off-grid sparse recovery algorithm we choose the operating 
point as probability of detection of 0.94 with a corresponding false alarm rate of . Then we choose 
the detection threshold for the beamformer output to achieve the same false alarm rate, which results in a 
significantly lower probability of detection rate of 0.38. 

Figure 5 and 6 shows the performance profile of the two algorithms evaluated for all the error metrics 
computed using  target realizations. We observe that in each case CS based off-grid sparse recovery 
algorithm outperforms detections based on thresholding of the output of traditional delay-and sum 
Beamformer.  Specifically, Figure 5 shows that, false alarm performance of CS sparse recovery was better 
than Beamformer detector in 96.5% of the Monte Carlo Runs. Beamformer false alarm performance was 
within 50% =1.5), of the best result in only 18% of the Monte Carlo runs. Figure 6 and 7 shows that, DOA 
and range localization error of CS sparse recovery was uniformly better than that of Beamformer. Finally, in 
Figure 8 we observe while the amplitude estimates of correctly detected targets of CS based algorithm are 
better than beamformer counterparts in 87% of the counterparts, the error performance of the two algorithms 
were competitive. The beamformer estimates were within 1.66 of the minimum error achieved in all of the 
simulation runs. 

 

Figure 4: Receiver Operator Curve (ROC) for the two algorithms 

        

Figure 5a: Performance Profile of Beamformer and CS: off-grid sparse recovery algorithms 
comparing total amplitude of false alarm metric . (b): Performance Profile of Beamformer and 

CS: off-grid sparse recovery algorithms comparing weighted direction of arrival localization 
error . 
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Figure 6 (a) Performance Profile of Beamformer and CS: off-grid sparse recovery algorithms 
comparing weighted range localization error . (b)Performance Profile of Beamformer and 

CS: off-grid sparse recovery algorithms comparing error in amplitude estimates of detected 
targets . 

2.7 Conclusion 
Compressive MIMO radar architectures purposefully subsample the signal in time and spatial domain to 
reduce the load on the signal acquisition system. As a result, the received signal is subject to aliasing and 
match filtering results in strong range/angle sidelobes, rendering traditional processing methods suboptimal. 
Sparse reconstruction algorithms can successfully detect and localize targets for sparse target scenes through 
joint processing of the range/angle domain subject to sparsity constraints. Our theoretical analysis and 
simulation results show that compressive radar architectures paired with sparse reconstruction algorithms can 
outperform their traditional counterparts if the target scene is sufficiently sparse.  
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